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FUNCTIONAL EQUATION IN THE PLASMA INVERSE
PROBLEM AND SOLUTIONS

INTRODUCTION

Here we discuss some mathematical aspects of the plasma inverse problem, that is,
the determination of the density of a plasma from its reflection of electromagnetic waves.
In the simplest version of this problem, a cold, collisionless, unmagnetized plasma is strat-
ified so that its density is a function only of x, and transverse electromagnetic waves prop-
agate in the ±x directions. The density of the plasma is N(x), and it is to be determined
from A(s), the complex reflection coefficient. Kay [1] and Balanis [2] have proposed
this model as a subject for mathematical study, and also for possible application in remote
sensing of the ionosphere.

In the simple one-dimensional problem, the plasma density N(x) can be determined
via solution of the Gel'fand-Levitan [3] integral equation. The solution is unique because
N(x) > 0. Various techniques for solution of this equation are available, and we propose
another one. We extend the Gel'fand-Levitan equation and write it in a more comprehen-
sive form that is amenable to Laplace transformation. The result of Laplace transformation
is a linear functional equation, which determines two functions in terms of A(s), the com-
plex reflection coefficient. The asymptotic form of either of the two functions deter-
mines N(x), the plasma density. This method and some older methods are then applied
to a very simple example. The relation of our equations to the Reimann function and
the Friedrichs operator is shown. The analytic properties of A(s) are treated. We conjec-
ture that A(s) can never be an entire function of s, the complex frequency. Simple ex-
amples show that A(s) can have one or two branch points at finite values of s. Other ex-
amples show that A(s) can be a meromorphic function of s. The conservation of energy
gives a relation between A(s) and the transmission coefficient. We combine this relation
with the Nevanlinna theory [4]; we obtain a classification of meromorphic reflection co-
efficients and a new result on the distribution of their poles.

Our new functional equation allows us to generate many analytic solutions to the
simple one-dimensional plasma inverse problem. Systematic methods of solution are
presented. We suggest a general method for dealing with algebraic functions A(s) that
have two branch points at finite s. We shall also consider rational functions A(s). Our
two approaches to the rational inverse problem differ somewhat from that given by
Kay [5]. As a particular case, we treat the Butterworth functions.

The mathematical discussion presented in this report is not directly applicable to the
reflection of electromagnetic waves by the ionosphere. This problem has almost none of
the simplifying features listed in the opening paragraph. The indirect application of our
results to the ionosphere will be discussed elsewhere.

Manuscript submitted October 22, 1975.
Note: Dr. H.H. Szu is now employed by the Institute for Advanced Study, Princeton, N.J.
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SZU, CARROLL, YANG, AND AHN

FORMULATION AND FUNCTIONAL EQUATION

In this section, we define the simple one-dimensional form of the plasma inverse
problem and relate it to functions of a complex variable. We shall obtain a linear func-
tional equation and some growth conditions on the two functions which appear in it.
These conditions are perhaps sufficient to ensure the uniqueness of the solution of our
functional equation.

The electron density is N(x), and the electromagnetic waves propagate in the ±x di-
rections. The external magnetic field is zero. With these assumptions, we shall have no
changes in the polarization of an incident electromagnetic wave. The electric field is
E(xt), and we may assume that it is always parallel to the y axis. Since the electron den-
sity depends only on x, we shall have no separation of charges in the plasma; this means
that

V E = V - i = 0, (1)

where j is the current density. We neglect reflection of electromagnetic waves by the
ions; that means that i is the electron current. For a cold, collisionless plasma we obtain

e2 t
N (x) E(x,t')dt' (2)

where e and m are the charge and mass of an electron. We assume that N(x) = 0 when
x < 0, and we seek to determine N(x) from the behavior of incident and reflected waves
on the negative x axis. The complex reflection coefficient is required at all frequencies;
the practical meaning of this statement will not be discussed in this report. Here we
adopt the simple physical picture of Kay and Balanis, in which the incident wave is a 6
function. This means that

E(x,t) = 6(x-ct) + R(x+ct) for x < 0, (3)

where c is the speed of light and R(y) is the reflection. The inverse scattering problem
is now the determination of N(x) from R(y). The problem has a trivial solution, in which
R(y) and N(x) vanish identically.

We have assumed that N(x) = 0 for x < 0. Causality then requires that R(y) = 0
for y < 0. The reflection from the plasma is found inside the forward light cone (Fig. 1).
These properties are characteristic of the physical or retarded electric field, which satisfies
Eq. (3). Solution of the inverse problem depends on the use of a spacelike electric field,
which vanishes inside the light cone but not outside. We shall combine these two possibil-
ities to obtain an "entire" electric field which satisfies a simple integral equation.

2



NRL REPORT 7946

K=O

E=/ E= = 0=O 

STRATIFIED
PLASMA

Fig. 1 - The light cone divides the x - t plane into four
quadrants. We consider a timelike and a spacelike solu-
tion of the wave equation; each solution is the sum of
6(x-t) and a bounded part.

In any case, the electric field must satisfy a partial -differential equation which is de-
rived from Maxwell's equations. Let

q(x) = 4iTreN(x), (4)

where re = e2/mc2 is the classical electron radius. Then Eqs. (1) and (2) lead to

-a _i IE (x,t) = q(x) E (x,t). (5)
\ax2 at2,!

Here and henceforth we put c = 1. Incidentally, we obtain plasma oscillations of long
wavelength by considering the case in which N(x) is nearly constant and a2 /aX2 is negligi-
ble. This means that q(x) is the square of the plasma frequency.

3
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The retarded electric field, E(xt), satisfies Eqs. (3) and (5). It can be written as

x

E(x,t) = S(x-t) + R(x+t) + f K(xy)[6(y-t)+R(y+t)]dy. (6)
max(-x,-t)

The Marchenko function K(x,y) appears here as a generalized translation operator. This
function might well be defined in a different way; other possibilities will be treated. It
enters in a simple form when we ask for a reflectionless, spacelike solution of Eq. (5).
This solution is 8 (x-t) + K(x,t); it must satisfy

F a2 a2 1
- - - q(x)j [6(x-t) + K(x,t)] = 0. (7)

This solution is reflectionless because we require that

K(x,t) = 0 for x < 0. (8)

It is called spacelike because it vanishes inside the light cone (Fig. 1); we require that

K(x,t) = 0 for I tI > x > 0. (9)

The singular part of this solution, the 8 function, appears explicitly in Eq. (7). We de-
mand that K(x, t) is bounded everywhere. A similar separation into a 6 function and a
bounded part is possible in the retarded solution, which satisfies Eqs. (3) and (5). We re-
quire that E(x, t) - 6 (x-t) is bounded everywhere.

If either the retarded or the spacelike solution of Eq. (5) is known, we can recover
Eq. (4) and the plasma density. Equation (7) can be written in the form

[a2 a2 q(x) K(x,t) = q(x) 8(x-t),

which states that the first partial derivatives of K(x,t) are discontinuous at x = t. We
find that

4
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ax K(xt) = aaK(x,t) = q(x)

where the partial derivatives are evaluated at t = x-, just outside the light cone (Fig. 1).
This result can be written as

dxq(x) = 2 -dxK (x,x), (lOa)

where the limit t -+ x- is implicit. Also, Eq. (7) leads to a claim that K(x, t) and its first
partial derivatives vanish at t = -x. Similar considerations apply to E(x,t), the retarded
electric field. We find that

d
q(x)= -2- limit [E(x,t) - 5(x-t)]. (1Ob)

dx tax

If t < x, the retarded electric field must vanish, and Eq. (6) gives

x

R(x+t) + K(x,t) + fI K(x,y)R(y+t) dy = 0, (11)
-t

which is the Gel'fand-Levitan integral equation. The range of integration is shown in Fig.
2. The conventional approach to the inverse problemis to solve Eq. (11) for K(x,t) and
then obtain q(x) from Eq. (1Oa). This might be done by iterating the kernel R(y+t).
Since R(y) is bounded, the resulting series should converge to the function K(x,t) when
x is small; we can show that it converges when

0 6 Itl < x < 4 MaxIR(y)I

This construction suggests that K(x,t) is uniquely determined by R(y).

Our method of solution uses Eq. (6) directly, without the assumption that t < x.
We introduce the "entire" electric field

&(x,t) = K(x,t) + 6(x-t) - E(x,t). (12)

5
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~~~10~ ~ ,0
Fig. 2 - Domains of integration for Gel'fand-Levitan equa-

\ ,' tion and extended Gel'fand-Levitan equation are plotted as
functions of t. For the Gel'fand-Levitan equation, t < x

/ \ ' t and the domain appears as a triangle. For the extended
Gel'fand-Levitan equation, all values of t are allowed, and

/ \ the domain appears as a semi-infinite trapezoid.

/ 
/ 

This is a bounded function which vanishes when x + t < 0; see Fig. 1. Indeed, Eq. (10)
implies that this function is continuous on the line x = t, and that

dxq(x) = 2k- &(x,X). (lOc)

This entire electric field incorporates the solution of the direct scattering problem, for
E(x,t) = - &(x,t) when t < x. Also, this function satisfies the integral equation

x

R(x+t) + &(x,t) + f &(x,y)R(y+t)dy = 0, (13)
max(-x,-t)

which is valid for all values of t. The range of integration is plotted in Fig. 2.

The plasma density is independent of time, and we can eliminate t from Eq. (13)
by taking Laplace transforms. Also, Laplace transformation will give us a derivation of
Eq. (6) from Eq. (7), thus closing the gap in the above reasoning. We can use the La-
place transform rather than the Fourier transform because all electric fields vanish in the
backward light cone; see Fig. 1.

The Laplace transform of the retarded electric field is

E(x,s) = f E(x,t)e-st dt.
_00

Because of the retardation, the integral converges when the real part of s is positive. The
condition (3) becomes

6
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E(x,s) = eSX + A(s)esx for x < 0. (14)

Here

00

A (s) = fR (y)e-sY dy
0

is the Laplace transform of the reflection. Clearly, A(s) is analytic when the real part of
s is positive. If the real part of s vanishes, then Eq. (14) shows that A(s) is the reflection
coefficient for a monochromatic wave; hence, IA(s)I < 1.

The retarded electric field contains a 6 function and a bounded part. We define

00

B(x,s) = f [E(x,t) - 8(x-t)]e-stdt,

and we have

IB(x,s) I 6 (constant) - for a > 0,
a

(15)

where a is the real part of s. Laplace transformation of Eqs. (5) and (7) gives

[a2 S2 - q(x)] E(xs) = 0

[ a2 S2 - q(x)j [e-sx + F(x,s)] = 0,

F(x,s) = |L K(x,t)e-stdt.

(16)

(17)

(18)

7
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Equation (8) implies that F(x,s) = 0 when x < 0. The integration in Eq. (18) extends
over the region where K(x,t) is nonvanishing; see (9). This finite range implies that
F(x,s) is an entire function of s. Since K(x,t) is bounded, we have

I F(x,s)l 6 (const.) sinh x. (19)
a

Using Eq. (11) and the uniqueness theorem for Laplace transforms, we see that A(s) de-
termines F(x, s) uniquely.

We can now write the one-dimensional plasma inverse problem in terms of relations
among these Laplace transforms. A change of sign in Eq. (17) gives

F a2

__ s2 - q(x) [esx + F(x,-s)] = 0. (20)

Equation (18) shows that this change of sign corresponds to time reversal. According to
Eqs. (16), (17), and (20), we now have three solutions to an ordinary, second-order dif-
ferential equation. There must be a linear relation among them. If s i 0, e-sx + F(x,s)
and eSX + F(x, - s) are independent solutions, and it is possible to write E(x,s) as a linear
combination of them. The coefficients depend on s. Since F(x,s) = 0 for x < 0, we can
use Eq. (14) to determine the coefficients. We find that

E(x,s) = e-sx + F(x,s) + A(s)[esX + F(x,-s)].

This equation is the Laplace transform of Eq. (6), which has thus been derived from Eq.
(7). By continuity, it holds when s = 0. Since E(x,s) = e-sX + B(x,s), we obtain

A(s)[esx + F(x,-s)] + F(x,s) - B(x,s) = 0, (21)

our functional equation for B(x,s) and F(x,s). This equation could have been derived di-
rectly from Eq. (13), using

F(x,s) - B(xs) = &(x,t)e-stdt,
_00

8
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but such a derivation would attain brevity at the expense of lucidity. When A(s) is pre-
scribed and the growth conditions of Eqs. (15) and (19) are imposed, the solution of Eq.
(21) is probably unique.

After solving for B(x,s) and F(x,s), we can easily recover Eq. (4). If aK/at is bound-
ed when x-t is small and positive, partial integration of Eq. (18) gives

easx
F(x,s) -K(x,x) ass -as s

and then Eq. (1Oa) gives q(x). Alternatively, we can use Eq. (lOb). We have

lim sesX B(x,s) = lim sesXF(x,s) = - &(x,x).
s~ +_ As -*

Finally, Eq. (10c) gives q(x).

We shall show that Eq. (21) can be solved analytically in many cases. If it can be
solved, the asymptotic form of either B(x,s) or F(x,s) gives q(x), and, finally, Eq. (4) gives
N(x), the unknown plasma density.

A SIMPLE EXAMPLE

The case in which

R(y) = - XeXY (22)

can be regarded as the simplest nontrivial example of the plasma inverse problem. This
problem was proposed and solved by Kay and Moses in a 1955 research report [6]. This
inverse problem will be solved thrice in this section, twice using Eq. (11) and once using
Eq. (21).

Iteration of the kernel R(y + t) is the straightforward method of solving Eq. (11).
This means that we set

K(x, t)= K (x, t), (23)

n=1

9
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where

K1 (x, t) = - R(x+t)

and

x

Kn+1(x, t) = - f K,(x, y)R(y+t)dy

for n > 1. In the present simple example,

K1 (x, t) = Xe-x(x+t),

K2(x, t) = X2 e-X(x+t) J dy e 2xY,

x x

K3(x, t) = X3e-X(X+t) f dy e-2xy f dz e-2z,

and so forth. These functions can be written explicitly in terms of Laguerre polynom-
inals and exponential functions, but it is simpler to write them in terms of the integral
operator

X

X | dy e- 2 XY.

After integration, we may change the variable from t to y; let C denote this change. Then
we have

K3 (x, t) = XeXN(X+t)ICI

and, in general,

K (x, t) = Xe-X(X+t)CI. ... CI,

10
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where I appears m - 1 times. The sum of the series (23) is

K(x, t) = XeX(X+t)(l + I + ICI + IC^+^

Another change from t to y gives

K(x, y) = XeX(X+Y)(1 + CI + CICI + ...).

We now have to find the sum

2, (x, y) = 1 + CI + GICI + ... .

This function satisfies

Z (x, y) -1 CIE= (x, y).

A simple calculation shows that

Z (x, y) = ex(x+y)

is the solution of this integral equation. Therefore,

K(x,t) = X for 0 < ItI< x.

Finally,

q(x) = 2X8(x)

is obtained from Eq. (10a). This solution depended on the fact that R(y+t) is a function
of y times a function of t; it serves as a separable kernel in Eq. (11).

Another method of solution involves construction of an ordinary differential equa-
tion that determines the time dependence of K(x, t). The function (22) satisfies the
simple equation

11

(24)
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The differential operator which appears here can be used to annihilate the first term in
Eq. (11), as well as the integral sign. We have

(at + N) K(x, t) + K(x, -t)R(O) = 0. (25)

Time reversal gives

(_

a
at

+ X) K(x, -t) + K(x, t)R(O) = 0.

Both of these differential equations are valid for -x < t < x. We now eliminate K(x, -t)
and use R(O) = -X; this gives

a 2

- K(x, t) = 0.
a t2

We have to integrate this differential equation. We set t = -x in Eq. (11) and find

K(x, -x) = - R(0) = X.

Therefore,

K(x, t) = X + (x+t)C(x),

where Cx) is a constant of integration. Use of Eq. (25) shows that C(x) = 0. Again we
obtain Eq. (24).

Finally, we solve this inverse problem by using Eq. (21) and some properties of en-
tire functions. The Laplace transform of Eq. (22) is

-XA(s) =-+N .

This is a very simple example of a meromorphic reflection coefficient. We substitute
this function in Eq. (21) and multiply by a linear factor. The result is

-A [esx + F(x, -s)] + (s+X)F(x,s) = (s+X)B(x, s).

12
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Since the left-hand side is an entire function of s, so is the right-hand side. Furthermore,

(s+X)B(x, s)esX = - X [eSX + F(x, -s)] esx + (s+X)F(x, s)esx (26)

is also an entire function of s. Use of Eq. (15) shows that this function is bounded as
s -+ - in the right half of the complex plane. Use of Eq. (19) shows that the right-hand
side of Eq. (26) is bounded by a constant times Is I if s -+ - while a (the real part of s)
is constant. Also from Eq. (19), we see that Eq. (26) is bounded as s -e - in the left half
of the complex plane. Since Eq. (26) is an entire function of s, it must be a linear func-
tion of s; Liouville's theorem on entire functions is used here. In fact, Eq. (26) must be
equal to C, a constant. We obtain

B(x, s) = s. esx

and

(s+X)F(x, s) - XF(x, -s) = XeSX + Ce-X. (27)

Let us replace s by -s and add the resulting equation to Eq. (27). We obtain

s[F(x, s) -F(x, -s)] = 2(X+C) cosh sx.

Since F(x, s) is an entire function of s, this quantity must vanish at s = 0. Therefore,
C = -X and F(x, s) is an even function of s. Finally, Eq. (27) gives

F(x, s) = 2 s .

The retarded or physical electric field is determined by

B(x, s) = -s
i+_X

We have

&(x, x) = X for x > 0.

13
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Again, we obtain

q(x) = 2XS (x).

REDEFINITION OF K

The Marchenko function K(x, t) is of great importance in the plasma inverse prob-
lem, and it can be introduced in various ways. In this section we relate it to the Riemann
solution of a hyperbolic equation, and then define it in terms of the transformation op-
erator of Friedrichs. The new definition will turn out to be equivalent to Eqs. (7), (8),
and (9).

The hyperbolic equation (5) can be integrated from an earlier time to a later time,
assuming that E(x, 0) and aE(x, 0)/at are known functions of x. The representation of
the solution in terms of these two functions is due to Riemann [7,8]. It is possible be-
cause t = 0 is never parallel to a characteristic line of Eq. (5). The characteristics of
Eq. (5) are diagonal lines in Fig. 1; they show a certain symmetry in x and t, as does the
differential operator in Eq. (5). Hence we can integrate Eq. (5) forward in x rather than
forward in t. Let us apply Riemann's method to integrate Eq. (5) from x = const. up to
a point P (Fig. 3). We shall find E at point P in terms of E and aElax evaluated on the
line AB (Fig. 3). The value of E at point P is influenced only by what happens in the
triangular domain in Fig. 3. The construction of Riemann's function is gimple in the
present problem because

a2 a2_ - q(x)
ax2 at2

is a self-adjoint differential operator; see Courant and Hilbert [8] for the general proce-
dure. The absence of first derivatives implies that Riemann's function is equal to unity
on the characteristics that appear as diagonal lines in Fig. 3. The electric field at point
P is given by

EA +EB 1 S aE aR
2 2 L ax ax

where EA and EB are the values at points A and B, and B is the Reimann function. The
integration runs along the line AB, where x is a negative constant. We have assumed that
q(x) = 0 when x < 0. Hence, we can decompose the electric field into incident and re-
flected waves:

E(x, t) = I(x-t) + R(x+t) for x < 0.

14
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B

P

Fig. 3 - Domain used in Riemann's
method for calculation of electric
field at P in terms of initial values
along line AB

This assumption is a small generalization of Eq. (3), where the incident wave was a 5
function. Partial integration gives

B,
PAB2JA~~~ax- a dt 1 B

2 fA
(ax

aR h
-__ Idt.

We now assign Cartesian coordinates to the points and lines in Fig. 3. The point P is at
(x, t) and the line AB has abcissa x'. We have x' < 0 and x' < x. The explicit formula
for the electric field is

E(x, t) = I(x-t) + R(x+t)

I t+X-X'

t-x+x'

1 t+x-x'

J t-x+x

I(x'-t') ai

R(x'+t')( a h (28)

15
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The Riemann function R can depend on x, t, x', and t'; but it does not depend on the
choice of I(x-t), the incident pulse.

We now notice that t does not appear explicitly in Eq. (5). This implies that R de-
pends on t - t' rather than t and t' separately. Hence we replace aR/at' by -aR/at in
Eq. (28). Any solution of Eq. (5) must satisfy the resulting relation; we apply it to
6 (x-t) + K(x, t), the reflectionless solution. Hence the Marchenko function is given by

K(x, t) = - I at / x't'

We have set x' = 0 to
because the boundary
Hence,

simplify this result. We note that R is an even function of t - t'
conditions determining R are symmetric about t - t' = 0 (Fig. 3).

a 1?

at / x'=t'= 0

and

t+X

E(x, t) = I(x-t) + R(x+t) + |

t+X

+ t-X

Finally, a change in the integration variables gives

X

E(x, t) = I(x-t) + R(x+t) + f K(x, y)[I(y-t) + R(y+t)]dy.

This result is recognized as a generalization of Eq. (6), and its derivation has shown the
relation of the Marchenko and Riemann functions.

We now treat Eq. (5) in an entirely different way, related to Laplace transforms and
ordinary differential equations. Since q(x) is nonnegative, we deal with a differential

16
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operator having a purely continuous spectrum. Suppose that L and Lo are two such op-
erators; under certain conditions they can be connected by the transformation operator
of Friedrichs [9,10]. The connection of this transformation with inverse problems is
shown in Faddeyev's review [11]. We extract some ideas from Faddeyev's paper and re-
arrange them as follows.

The two linear differential operators L and Lo are supposed to be second-order, self-
adjoint operators; indeed, we assume that

d2
Lo = - -+ S2.

dx2
(29)

The second term is s2 times the unit operator, and the assumption that Lo is self-adjoint
does not mean that s2 is real. Let us assume that

V = L - Lo

is independent of the parameter s. Friedrichs has studied the unitary transformation
which connects L and Lo; it satisfies

LU = ULo. (30)

His theory is simplest in the case of L and Lo having purely continuous spectra, with no
discrete spectrum; this case occurs in the plasma inverse problem. Let

U = 1 + K,

where 1 is the unit operator. Then

L(1+K) = (1+K)LO

and, consequently,

V(1+K) = KLO - LOK. (31)

We want to identify K with the Marchenko function; this requires use of boundary con-
ditions which are not expressed in Eq. (31). But in any case K must commute with the

17
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unit operator; this means that the right-hand side of Eq. (31) is independent of s. If the
boundary conditions are independent of s and if Eq. (31) can be solved for K, then K is
independent of s.

To make this formal manipulation a little more explicit, we consider the functions
which are annihilated by L and Lo. Suppose that

L; = 0 and Loo = 0.

Then, Eq. (30) implies that LUO = 0, and Up is a function annihilated by L. If l =

(1+K)O, then Lo 1 = 0 or Lo o1 = -Vo 1l. More explicitly,

Lo i 1 (x) = -f V(x, y)ol (y)dy,

where V has been represented by a kernel. We write this as

LO A1 (X) = - f (x-y)V(y, z)il(z)dydz

and try to divide by LO. Since LO annihilates i, we have

p1 (X) = 0(X) +fGo(x-Y)V(Y, z)ip1(z)dydz, (32)

where Go is Green's function for the operator (29); it depends on x-y. The boundary
condition

Go(x-y) = 0 for y > x

is a simple choice which makes Eq. (32) into a Volterra integral equation. The integral
equation can be solved by an iteration process if V(x, y) is small in some sense. Formal
summation of the series gives

ip1 (X) f [6(x-y) + K(x, y)]O(y)dy.

18
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The boundary condition on Go implies that

K(x, y) = 0 for y > x. (33)

We now turn to the inverse transformation. Let

U-l = 1 + K'. (34)

Since U is unitary, we must have

K + K' + KK' = K + K' + K'K = 0.

More explicitly, we have two Volterra integral equations,

K(x, y) + K'(x, y) + | K(x, z)K'(z, y)dz = 0

and

x
K(x, y) + K'(x, y) + f K'(x, z)K(z, y)dz = 0.

The limits of integration are consistent with the condition

K'(x, y) = 0 for y > x. (35)

The condition (33) allows us to write Eq. (31) in a more explicit form

fV(x, z)[6(z-y) + K(z, y)]dz = K(x, z)LO(z, y)dz

yo

19
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The limits of integration are chosen so that the first argument of K(x, y) can increase in-
definitely, whereas y0 is the lower bound for the second argument. The kernel corres-
ponding to (29) is

Lo(x, y) = - 8"(x-y) + s2 6(x-y).

Partial integration shows that, when x < 00, the right-hand side of Eq. (36) is

C(x, y) = [K(y, y) - K(x, x)] 6 '(x-y) + a (y, y) + aK (x, x)] 6 (x-y)-

+ K(x, yo)6'(yo-y) - a (x, y0 )6 (yo-Y)
ay

+ (a 2 - ay2) K(x, y).

A Taylor series expansion of K(y, y) in powers of y - x shows that the first two terms
on the right-hand side are equal. Moreover,

C(x, y) = 0 for y > x. (37)

We can now find V(x, y) in terms of C(x, y) by use of the operator (34). Using Eq. (35)
and (37), we find that

x

V(x, y) = C(x, y) +J C(x, z)K'(z, y)dz.

y

Since V(x, y) vanishes for y > x, we are led to write

V(x, y) = q(x)6(x-y) + Q(x, y)

20
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where Q(x, y) is a bounded function that vanishes for y > x. We have assumed that V
is self-adjoint; this implies that Q(x, y) = 0 and

V(x, y) = q(x)5 (x-y).

Finally, Eq. (36) becomes

a2 a2 [ x)]

t --) K(x, y) + 2 L K(x, x) 8 (x-y)

- K(x, yo)6'(y-yO) - aK (x, yo) 5(y-yo)

= q(x)5(x-y) + q(x)K(x, y).

This shows that K(x, y) and aKfay vanish at y = y0 and that

d
q(x) = 2 - K(x, x).

Also, K(x, y) satisfies

a2 a2

Ea2 -- a - q(x) K(x, y) = 0 for y < x.
Iax 2 ay2 I

This differential equation is independent of s, and so are the boundary conditions ap-
plied at y = y0 and y = x. Therefore, K(x, y) is independent of s. In the plasma in-
verse problem we assume that q(x) = 0 for x < 0; this leads to y0 = -x. Finally, K(x, t)
satisfies Eqs. (7), (8), and (9).

The condition that K(x, t) and aKl/t vanish at t = -x has appeared again here; it
was mentioned on page. 5. The simple example considered above violates this con-
dition because q(x) has a singularity at x = 0; see Eq. (24). The difficulty can be avoided
by choosing y0 slightly less than -x.
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ANALYTIC PROPERTIES

The Laplace transform A(s) plays an important part in Eq. (21), our linear functional
equation. In this section we present examples to show that A(s) can have one or two
branch points at finite values of s and then discuss meromorphic functions A(s) in detail.
Entire functions A(s) appear not to occur in the plasma inverse problem.

A simple example of a meromorphic function was treated in pages 12 to 14. As
another meromorphic example, we take the function

A(s) =
-[(b-c)s + (a2+bc)] (sinh dr)- (b+c)cosh dr

D(s)
(38)

where r = (s2+a2 )1/2 , and

D(s) = [2s2 + (b+c)s + (a2 +bc)] (sinh d) + (2s+b+c)cosh dr.

The numbers a, b, c, and d are real and positive. Use of Eq. (21) gives

2s[cosh r(d-x) +(src\

D(s)

B(x, s) =F2s eds
B[xDs) L(sii) -

sinh r(d-x)]
- esx for 0 < x < d

1] e-sx for x > d.

The entire function F(x, s) is given by

F(x, s) = cosh rx - (s-b)sinhrx) esx for 0 < x < d

22
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and

F(x, s) = (cosh dr) {(b+c)sinh s(x-d) +[exp - s(x-d)]}

- (s-b) (sinh dr) rc sinh s(x-d) + cosh s(x-d
( r ) l- + ohss-

(r ~ sinh s(x-d)+ (r sinh dr) s x-d) _eSsx

for x > d. These
totic forms give

functions satisfy the conditions of Eqs. (15) and (19). Their asymp-

9(x, x) = (1/2)(b + a2 x) for 0 < x < d

and

&(x, x) = (1/2)(a2 d + b + c) for x > d.

Finally,

q(x) = a2H(x)H(d-x)+ b6(x) + c5 (x-d),

where H(x) is the Heaviside step function. Note that we can obtain an algebraic function
from Eq. (38) by taking the limit as d -* +-. The limit depends on the sign of the real
part of r; and in the limit branch points appear at s = ± ia.

Another reflection coefficient with the same branch points is

A(s) = s(r-s+b) - (b+c)r - (a2 +b2 +bc)

s(r+s+b) + (b+c)r + (a2+b2+bc)
(39)

Here a, b, and c are positive constants. We draw the branch line along the imaginary
axis from -ia to ia, so that r is an odd function of s. If x is positive, the solution of
Eq. (21) is
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C b2s(r + -b)e - esx
B(x, s) = s(r+s+b) + (b+c)r + (a2 +b2 +bc)

and

sinh rx b sinh rxF(x,s) = cosh rx + (b+c-s) r~ - __
r r(11+-bx)

+ b2(b+c-s) rx cosh rx - sinh rx - e-SX
r3 (1+bx)

From these functions we find that

&(x, x) = + b x + c2 1+bx 2'

and hence

q(x) = [a2 + 2b2 H(x) + c6(x).

L (1+bx)2

This example shows that A(s) can have a pair of branch points on the imaginary
axis, whose location gives the limit of q(x) as x-+oo. In this example, the limit exists
and does not vanish. If q(x) decreases slowly as x-++0 we may expect that A(s) has
branch points at 0 and 00. For example, suppose that

(2a+1)H(Il (ibs) - 4ia1H(l) (ibs) - (2a-l)HIl+) (ibs)

(2a-1)H(1+) (ibs) - 4iaHI )(ibs) - (2a+1)HM) (ibs)

Here a and b are positive constants and H(1) is the Hankel function of the first kind.
Using the circuit relation for this function [12], we can show that A(se2lri) = A(s) only
when 2a is an odd integer. Furthermore, A(s) has a pole on the positive real axis if
a < 1/2; hence we assume a > 1/2. If x is positive, the solution of Eq. (21) is
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B(x, s) =

-Sia (x+b) 12)8a !
(2a-1)M.'2) (ibs) - 4iaH,( ) (ibs) - (2a+1)H(Rl) (ibs)

and

F(xs) = 16 (x+b)112[(2a+1)Ha)(ibs)-4iaIa(l)(ibs)-(2a-l)H(1) (ibs)a(2)ais(x+b)]

- 16 (x+b )l1/2 [(2a+1 )H(2) (ibs)-4iaH(2) (ibs)-(2a-1)Ia2) 1 (ibs)] H~1 ) (is (x+b)) - e-Sx.

F(x, s) is an entire function of s. To show this, we begin by noting that HM(')(ibs)
HM2 )(is(x+b)) - H( 2)(ibs)H0-)(is(x+b)) is an entire function, and then we use the recursion
relations [121 to make entire functions out of Hankel functions of orders a-i, a, and
a+1. From the asymptotic form of B(x, s) or F(x, s), we obtain

P(x, X) = (a2
- 1b 4)x

2b(x+b)

Finally,

q(x) = (a2 - 1/4)/(x + b)2 .

The reflection coefficient A(s) can profitably be considered together with the trans-
mission coefficient T(s). If xq(x) -> 0 as x -> +00, we can demand that

E (x, s) T(s)e-sx as x -- +00. (41)

This condition and Eq. (14) serve as boundary conditions for the differential equation
(16). The derivative satisfies dt/dx - -sT(s)e-sx as x -* +00, whereas differentiation of
Eq. (14) gives dt/dx at negative values of x. If s t 0, we notice that E(x, -s) is another
solution of Eq. (16), with different limiting forms. The Wronskian of these two solu-
tions gives

1 - A(s)A(-s) = T(s)T(-s) for s t 0. (42)

25
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If s2 is real and negative, this relation can be derived from the conservation of energy for
electromagnetic waves of frequency is.

If s = 0, our boundary conditions give dE/dx = 0 for x < 0 and dE/dx -e 0 as x -

+00. Because of (4), q(x) is real and nonnegative. These three conditions require that
E(x, 0) = 0 for all x, unless q(x) vanishes identically. Therefore, we have

1 + A(0) = T(O) = 0, (43)

and Eq. (42) is valid at s = 0. If q(x) does vanish identically, A(s) and T(s) - 1 also van-
ish identically, and Eq. (42) is satisfied, but not Eq. (43).

The present assumption that xq(x) -e 0 as x -e +-0 is probably not strong enough to
establish any analytic properties of A(s). If there is some positive number N such that

q(x)eNx -+ 0 as x -* +-, (44)

then it is perhaps possible to show that A(s) is analytic except for isolated points by
using Regge's method [13]. We shall not try to prove that Regge's method succeeds.
Regge does show that branch points can occur, even if we assume (44). To show that
A(s) and T(s) are meromorphic functions, we must assume that (44) holds for all positive
numbers N. To prove that they are meromorphic, we introduce f(x, s), a solution of
(16) which satisfies

f(x, s) -e-sx as x o .(45)

This condition was suggested by Jost [14], and it is somewhat simpler than (41). We
can write Eq. (16) in the form of an integral equation, using Eq. (45):

00

f(x, s) = e~' - J [sinh s(x-y)]q(y)f(y, s)dy.
x

This equation can be solved by iterating the kernel. We set

f(x, S) = f (X, S) (46)

n=O
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where

fo(x, s) = e-sx

and

fn(x, s) = - f- [sinh s(x-y)]q(y)f,_ 1 (y, s)dy for n > 1.
x

The series (46) converges for all values of s because

Isinh s(x-y) Iq(y)dy

x

always converges. Therefore f(x, s) is an entire function of s. We differentiate (46) term
by term to show that df/dx is an entire function of s. Since (45) differs from (41) only
by a factor of T(s), we have

f(x, s) = - e-sx + A(s) esx
T(s) T(s)

when x is negative; this implies that

sf(x, s) + df = 2s As) eSx
dx T(s)

and

sf(x, s) - =x es
dx T(s)

Hence, sIT(s) and sA (s)T(s) are entire functions of s. We conclude thatA(s) and T(s) are
meromorphic functions. Incidentally, (43) says that s = 0 is a zero of T(s), and we now
see that it must be a simple zero.
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We introduced A(s) and B(x, s) = E(x,s) - e-sx as Laplace transforms of bounded
functions. If a, the real part of s, is positive, then A(s) and B(x, s) are analytic functions
of s. The bound in Eq. (15) shows how B(x, s)esx vanishes as s e+ - and a -+ +00; the same
argument can be applied to A(s), which is of order 1/a. The case in which a is bounded
while s -+ - must now be considered. We can claim that f1 IR(y) Idy converges and that
IR'(y) I is integrable over any finite interval. Let s = a + ir; we assume that a is bounded

and nonnegative. We can now show that, for any positive e,

J R(y)e-Ysdy < e

when IT I is sufficiently large. To prove this, we choose a positive number M such that

f IR(y) idy < (1/2)e.

MWe have

0= | (y)e-sydy < 6 R(y)e0e-irydy + I IR (y) Ie--Ydy,

and we use partial integration to show that the right-hand side is

IR(M) I +IR(0) I M 1 M +12e
< I n1 + I I If IR'(y) Idy + (1/2)e-

We now choose IT I so large that this sum is < e. We conclude that A(s)-*0 uniformly as
s-+o, provided that a > 0. A similar argument applies to B(x, s)esx, for every positive x.
Using (41), we see that T(s)-1 uniformly as s-+o, provided that a > 0.

We now return to the entire function sIT(s) and estimate its behavior as s < 00, with-
out restrictions on a. If f(s) is an entire function, and M(r) is the maximum value of
If(s) I on the circle Isl = r, then the order of f is defined as [15]

Qn Qn M(r)
lim sup Q
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We can now show that the order of sIT(s) is > 1, unless

T(s) = +\ (47)
S+X

where X is a constant. To prove this, we assume that sIT(s) has order < 1 and show that
we are led to Eq. (47). The assumption of order < 1 means that we have

S 1 < a exp(br') (48)
T(s) s-1

when a < 0 and r = Is I is sufficiently large. The constants a, b, and c are positive, and
c < 1. By the Phragmen-Lindelof theorem [15], the left-hand side of (48) is bounded
by a constant when a < 0. Then we have

ST(s) |<(const.) Is-1 I

when a < 0. An inequality of this form also holds when a > 0 and r is sufficiently large
because T(s) -+ 1 when s -- 0 in the right half-plane. We now use Liouville's theorem on
entire functions and obtain sIT(s) = Ks+X, where K and X are two constants. Since T(s)
- 1 in the right half-plane, we must have K = 1. Therefore T(s) is given by Eq. (47).
This completes the proof, but we could also prove that Eq. (47) leads to

A(s) = X e- as
s+X

which differs only by a translation (along the x axis) from the simple case already studied.

To obtain more detailed results about the meromorphic functions A(s) and T(s), we
need to assume that q(x) decreases rapidly as x -e +-0. In the remainder of this section,
we assume that there are positive numbers 5 and e such that

q(x) < (const.) exp(-6xl+e) (49)

when x is positive. This hypothesis is somewhat stronger than (44), and it leads to several
interesting results on the functions A(s) and T(s). The bound (49) need not exclude S
functions in q(x); a finite number of them can easily be accommodated by slight modifi-
cations in the following argument, which is taken from Sartori [16]. We wish to estimate
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the sum (46). Since q(x) satisfies (49), the integral Iq = f - q(x)dx must exist. If n > 0
and x > 0, we have the following bound for each term in the series (46):

If'(x's) I< Pq e I xp ( - Is Ix) J exp(2 Is Iy)q(y)dy.
Is In 

(50)

This can be proved by induction. We have

Isinh s(y-x) I< exp Is I (y-x)

when y > x; we use this and Iof(x, s) I < exp( Is Ix) to show that (50) is valid for n = 1.
To complete the proof by induction, we use the same bound for the hyperbolic sine
again. A similar bound for Icosh s(y-x) I is available; it can be combined with (50) to
show that

Id fn(x, s) <
Idx- I

(51)
In-l o

q exp ( - Is Ix) exp(2Is Iy)q(y)dyIsIn-i exf 

when n > 0 and x > 0.

We know that f(x, s) and df(x,s)/dx are entire functions of s. From the bounds
(50) and (51), we have

and

If(xs) I< exp ( IsIx) + exp( - IsIx) f exp(21sIy)q(y)dy
I S I -Iq fo

d I I _ + exp(- I _ I ) (
-x f(x, s) <I slIexp( I sIx) + Isep-sI) exp(2 I sIy)q (y)dy

I ~~~~~~~IsI I Iq f0
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when Is I > Iq. To estimate the integral which occurs here, we consider the entire
function

Jexp(xz-8x1+E)dx = 1 E r(+) ()1+e (n (52)
n=i

Application of a standard test to the coefficients of the power series [15] shows that this
integral is a function of order (1+e)/e and the type is finite. Hence, when Is I is sufficiently
large, the logarithm of fj exp(21sly)q(y)dy is bounded by a constant times IsI(1+e)Ie.
This means that f(x, s) and df(x,s)/dx are entire functions of order (1+e)/e, at most.
This holds at x = 0, and therefore s/T(s) and sA(s)/T(s) are entire functions of order
(1+e)/e, at most.

In order to show that sA(s)/T(s) can actually be an entire function of any order > 1,
we need a calculation for a specific function q(x). Suppose that q(x) = exp (-xi+E) when
x > 0. Then

f 1 (,s) = -|; exp(-2ys - yl+e)dy

and

d~~~~
f 1(0,s) = - -(1/2) J exp(-2ys - yl+e)dy

The integral (52) can now be used to show that

dxsf1(0, s) + dx f1 (0, s) (3

is an entire function of order (1+e)/e. The difference sfi(0, s) - dfi(0,s)Idx and the
functions sfo(0, s) and dfo(0, s)/dx are of relatively slow growth as s -+ 0. The estimates
(50) and (51) show that 1 sf,(x, s) and t dfo(0,s)ldx are smaller than (53) by afn=2 f(,~ xaesalrta 5)b 
factor of magnitude Is l-1 'as2s - 00. Therefore, sA(s)/T(s) is an entire function of order
(1+e)/e, and it grows faster than sIT(s) as s -> 0.
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The functions A(s) and T(s) themselves are meromorphic rather than entire, and
Nevanlinna [17] has generalized the concept of order (defined above for entire functions)
to handle meromorphic functions. The entire function f(0, s) has infinitely many zeros,
and their distribution was briefly discussed by Sartori. The functions A(s) and T(s) have,
in general, infinitely many poles, and we shall obtain results on their distribution by use
of the modern theory of meromorphic functions.

The entire function sIT(s) has finite order within the Nevanlinna scheme; indeed, it
has the same order as was calculated above with the simple definition applicable to entire
functions. Let p(f) denote the Nevanlinna order of a function f(s). Then the elementary
properties of the Nevanlinna order [4] give

p(s/T) = p(1/T) = p(T). (54)

We have seen that

p(T) > 1 (55)

except in the case (47). We shall show that

p(A) = p(T), (56)

except in the case (47). We remark that equality does not always hold in (55) because
p(sA/T) = p(A/T) > 1 in the specific example quoted above, and p(A/T) > 1 implies
that p(A) > 1 or p(T) > 1.

Any meromorphic function of finite order can be written as the quotient of two
Weierstrass products times an exponential function [4]. Thus,

A(s) = N(s) exp [P(s)], (57)

where N(s) and D(s) are entire functions of the Weierstrass product form and P(s) is a
polynomial. For T(s), we can write a similar formula. Since T(s) has only one zero,
which is known to be simple, we have

T(s) = ds exp[p(s)]
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where d(s) is a Weierstrass product and p(s) is a polynomial. Since A(s) and T(s) are ana-
lytic in the right half oif the s plane and are bounded on the imaginary axis, all the zeros
of d(s) and D(s) are in the left half-plane. Then Eq. (42) implies that d(s) = 0 iff D(s)
= 0. Since d(s) and D(s) are Weierstrass products, they are the same. Therefore

T(s) = D-(s) exp [p (58)

The denominator D(s) is an entire function having order p(D) and zeros si, S2 S3,.
Except in the case (47), p(D) > 1 and the sum

n=1 2> Isn la ~~~~~~~(59)

converges or diverges depending on the value of a, which is real. One can show that p(D)
is the greatest lower bound of those a's for which (59) converges [18]. This result in-
dicates that p(D) is an index of the density of poles of A(s) and T(s) as s - 00, For this
reason, we want to show that

p(D) = p(T)- (60)

This equation and Eqs. (54), (55), and (56) are our new results for meromorphic reflec-
tion coefficients.

We begin the proof by showing that the polynomial p(s) which appears in Eq. (58)
has degree < p(D). In the simple case (47), p(s) is a constant and this inequality becomes
0 < 0, which is valid. Let us assume that the degree of p(s) is > p(D). Then the behav-
ior of T(s) as s -+ - in the right half-plane is the same as that of exp p(s); but T(s) -+ 1
in this limit. Hence, p(s) is a constant and its degree is zero. Then our assumption gives
p(D) < 0, which is impossible.

We now know that p(s) has degree S p(D). Use of Eq. (58) and the elementary
properties of the Nevanlinna order gives us p(T) < p(D). Furthermore, the connection
between the poles of T(s) and the convergence of (59) gives p(T) > p(D). These two in-
equalities imply Eq. (60).

The remaining question is the order of A(s); we want to prove Eq. (56). From Eq.
(58) we have

T(s)T(-s) _S2 ep(s) + p(-s)]. (61)
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Using the fact that D(s) has all its zeros in the left half-plane, we can easily see that
D(s)D(-s) has the same order as D(s). Also, an argument similar to that used above shows
that T(s)T(-s) has the same order as D(s). Then Eq. (42) shows that A(s)A(-s) has the
same order as D(s). Now A(s)A(-s) could have order lower than that of A(s), but not
higher. Therefore we have

p(A) > p(D) = p(T). (62)

The next step is to prove that

Max [p(N), p(D)] > p(A), (63)

except in the simple case (47). To prove this, assume that p(N) < p(A) and p(D) < p(A).
Then the behavior of A(s) as s -+ 0 in the right half-plane is the same as that of exp [P
(s)], and A(s) -+ 0 requires that the degree of P(s) is 6 1. Then our assumption gives
p(D) < 1, and Eq. (60) gives p(T) < 1. This is possible only in the case (47), which
proves (63).

We can now complete the proof of Eq. (56). We have seen that A(s)A(-s) has the
same order as D(s); and (57) gives

A(s)A(-s) = N(s)N(-s) exp[P(s) + P(-s)]. (64)
D(s)D(-s)

Assume that Eq. (56) is false, and exclude the simple case (47). Then (62) and (63)
give

p(N) > p(A) > p(D) = p(T) > 1. (65)

Now the zeros of Eq. (64) are the same as those of N(s)N(-s). Since N(s) is a Weierstrass
product, N(s)N(-s) has the same order as N(s); it has order > 1. Therefore, N(s)N(-s) has
infinitely many zeros, and a sum similar to (59) can be formed from them; it converges
only when a > p(N). However, the Nevanlinna theory gives a bound for the density of
the zeros, or an upper bound for the a's at which this series diverges [4]. Since Eq. (64)
has the same order as that of D(s), the series must converge if a > p(D). Hence p(D) >
p(N). This contradicts Eq. (65), and the contradiction shows that Eq. (56) is true. This
concludes our general discussion of meromorphic functions, but rational functions A(s)
will appear in the next section.
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METHODS OF SOLUTION

A general method for finding solutions of Eq. (21) has not been found. In this sec-
tion, we consider first algebraic functions A(s) having branch points only at s = ±ia, and
indicate a possible method of solution. Then we consider rational functions A(s); Kay's
solution of this problem [5] is rewritten in two different ways. Among rational functions,
the Butterworth functions appear as a limiting case.

For algebraic functions such as Eq. (39), we determine F(x, s) indirectly, by intro-
ducing two other entire functions:

Fe(x, s) = (1/2)[F(x, s) + F(x, -s)] + cosh sx

is an even entire function, and

Fo(x, s) = (1/2)[F(x, s) - F(x, -s)] - sinh sx

is an odd entire function. With this notation, Eq. (21) becomes

F, (x I S) + 1-A (s)] F0(xs) = B(xs)+e--x (66)L 1 +A (s)] 1+A(s)

We consider the case (39) and multiply Eq. (66) by r + b. Then

F0(x, s)
(r+b)Fe(x,s) + [s2 + (b+c)r + a2 + b2 + bc] = G(xs),

S

where G(x,s) is a function which decreases exponentially as a -+ 0. The bound (19) im-
plies that G(x, s) can increase no faster than a polynomial times exp(-xs) as a - 00, We
define

i(s) = bFe(x,s) + (S2 + a2 + b2 + bc) F0(xs)
5

and

t(s) =Fe(xs)+(b+c) F0(x,s)
5
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Then i(s) + rt(s) = G(x, s). Since i(s) and 0(s) are even entire functions, i(s) - ro(s) =
G(x, -s). The product of these two equations is

4,2 - (S2 + a2 ) 02 = G(x,s)G(x,-s). (67)

The right-hand side is an even entire function, and it cannot increase exponentially as
s -+ I; hence it is a polynomial. The recent work of Gross, Osgood, and Yang on such
quadratic functional equations [19] suggests that G(x,s)G(s, -s) should be a linear func-
tion of s2, in order to make the solution of Eq. (67) unique, up to a few constants.
Hence, we assume that

4,2 - (s2 + a2 )0,2 = A2 (S2 + a2 ) + B2 , (68)

where A and B are constants to be determined; they may depend on x. To solve Eq. (68),
we write it as

(Bo + iAr2 o)2 + r2(AO - iBO)2 = (A2r2 + B2)2 .

Here By + iAr2q5
solution is

and AdO - iBM are even entire functions, which must be of order 1. The

BO + iAr2 o = + (A2r2 + B2) cos ixr (69)

and

AO - iB0 = ± (A2 r2 + B 2 ) sin ixr (70)

The coefficient ix has been chosen so that (19) may be satisfied. The same condition (19)
requires the ambiguous sign in Eq. (70) to be the same as that in Eq. (69). Since the signs
of A and B are yet undetermined, the ambiguous signs in Eq. (69) and (70) can now be
dropped. These equations yield

4,(s) = iAr sinh rx + B cosh rx
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and

(S) = -iA cosh rx - B sinh rx
l.

Now

F0(x,s) - (s)-bo(s)

s r2

must be an even entire function; this requires thatB = -iAb/(1+bx). To satisfy condition
(19), we choose A = i. Then

sinh rx b sinh rx
Fe(x, s) = cosh rx + (b+c) - r

l. rl.+bx)

+ b2(b+ ) rx cosh rx - sinh rx

r3 (I1+bx)

and

F0(x, s) = - s sinh rx + b2 s Sinh rx - rx cosh rxFo~~x, S)= - b s ,,<,7 I
r r-(i+bx)

These functions yield the F(x, s) given in page 24. The method can perhaps be general-
ized to treat all other algebraic functions having the same branch points.

We proceed to consider rational functions A(s). If A(s) is rational and q(x) satisfies
condition (44) for all positive values of N, then T(s) is given by Eq. (47) and A(s) must
have the simple form considered in the example. In general, A(s) does not have this
form, and hence q(x) cannot satisfy (44) for all N. This shows that q(x) decreases no
faster than exponentially as x -+ +-.

Our method, that of solving Eq. (21) and obtaining q(x) from the asymptotic forms
of F(x, s) and B(x, s), implies that we need only the asymptotic forms. We may expect
that
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Fb1 (x) b2(x) 1
B(x, s) "- I + +. e-sx (71)

as a S +00. since A(s) is a rational function, it must be analytic except at a finite number
of poles; and Eq. (21) requires B(x, s) to have the same singularities as A(s). Using (15)
and (19), we can show that B(x, s)esO is a rational function of s. Then Eq. (21) leads to

E gi(x)siesx +E hj(x)sie-sx

F(x, s) = (72)

E di(x)sj

i

where the degrees and coefficients of the polynomials are to be determined. We can ob-
tain a relation among the degrees by substituting Eqs. (71) and (72) into Eq. (21) and
separating the terms in e--x. The terms in esx give a number of equations in dj(x), gj(x),
and hj(x). Further equations in dj(x), gi(x), and h1(x) come from the requirement that
F(x, s) is an entire function of s. The solution for any rational function A(s) can be ob-
tained by this method. A more explicit solution can be obtained only if some restrictions
are imposed on the rational function A(s).

A classification of rational functions A(s) is furnished by T(s), the transmission co-
efficient. If q(x) satisfies (44) for all values of N, then T(s) can have only one zero. But
in fact q(x) does not satisfy (44) for all values of N. Moreover, Eq. (42) suggests that
T(s) must be a rational function. Then T(s)T(-s) is an even function of s with finitely
many zeros; when A(s) is given, they can be found from Eq. (42). The multiplicity of
these zeros is different in the different rational cases. Because of Eq. (43), s = 0 must be
a double zero of T(s)T(-s). Let us assume that all other zeros are simple; this simplifying
assumption is copied from the work of Kay [5]. Also, we use his assumption that A(s)
has only simple poles; thus, we write

n

A(s) =

where aj * 0 and the real part of XI is positive. Since B(x, s) has the same singularities
as A(s), we write
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n

B(x, s) = I

j=i

Oj(x) esx
s±x*

SJ
(73)

where the functions oj3(x) are to be determined. Now, F(x, s) is a linear combination of
ex and e-Sx, with rational coefficients. Both coefficients must have poles. If F(x, s)
contains a term such as

sinh x(s+Xj)

s+xj

then Eq. (21) implies that B(x, s) has a pole at s = Xi; this is impossible. If we change
the sign of s in Eq. (21) and try to solve the two resulting equations for F(x, s) and
F(x, -s), we must divide by the determinant of this system of equations, which is (42).
The two rational coefficients in F(x, s) are therefore expected to have poles at the zeros
of (42). Suppose the zeros of (42) are Ki = -K 1 = 0, K2 , -K2 , K3 , -K3 , . . Kw and -Knf
Then the K's and X's must be disjoint sets of complex numbers. We can expect to write
F(x, s) as a linear combination of the functions

sinh x(s ± Kj)

S ± Kj

with coefficients depending only on x. In fact, we want to write

n r sinh x(s-Kj) sinh x(s+Kj)]
F(x, s) = 2 Y fj(x) [A(Kj) (s-Kj) (S+Kj) (

j~=l

where the functions f,(x) are to be determined. Substitute this into Eq. (21) and separate
the terms in eSx; they are

A(s) + A(s)

n

n fj(x)[A(Kj)
j1l

exp(Kjx)

(S+Kj)

-exp(-KjXx)
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n

+ j1
i=l

f4(x) [ (Kj)
exp(-Kjx)

(S-Kj)

exp(Kjx)

(S+Kj) J
(75)

This is a rational function of s, and it vanishes as s -+ -. It must vanish identically; to
achieve this, we set the residue equal to zero at each possible pole. Equation (74) was
contrived so that (75) has zero residue at s = Kj and at s = -Kj. We must have zero resi-
due at s = -X1j; this gives

n

[A (Kk)

k=l

eXp(KkX) exp (-Kk ( 1

j k~~~~~k X 

for j = 1, 2, . . . , n. We now have n linear equations to determine the n unknown functions
fj(x). We could determine the functions (31(x) by examining the terms in e-sx which appear
in Eq. (21); but in fact Eq. (73) is no longer needed. To determine q(x) we need only F(x, s);
this requires that we solve Eq. (76). Let us rewrite Eq. (76) as

n

3 Mk(x)fk(x) = exp(-Xjx),

k=1

where M(x) is an n X n matrix with elements

exp(-Xjx + Xkx) exp(-XjX-Kkx)
M,,(x) = A(Fk) - Xj - Kk Xj + Kk

To complete this calculation. we assume that the inverse matrix exists. Then

n

f(x) = 3
k=1

[M(x)-l ]jk exp(-Xkx)
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and

&(x, x) = -lim serx F(x, s)

n

= [A(Kj)exp(Kjx) - exp(-Kjx)]fj(x)

j=i

n n

E E >3 >~ [# Mkj(x)] [M(X)-]ik

dx

j=l k =1

= - Trace M(x)-l d M(x).

Using a convenient identity, we write this as

X) d n det M(x)
dx det M(O)

The denominator is inserted to ensure that P(x, x) is continuous at x = 0; q(x) and
&(x, x) must vanish for x < 0. Finally, we have

q(x) = -2 d n det M(x)
dx2 det M(O)

which agrees with Kay's solution of the problem [5]. Each element of M(x) increases or
decreases exponentially as x - +cc; and, in general, q(x) will decrease exponentially as
x - +00.

This solution of the rational inverse problem certainly does not apply when all the
K 's vanish, although this could perhaps be treated as a limiting case. We now assume that
all the K'S vanish and also make the simplifying assumption that A(s) has no zeros. These
two assumptions imply that A(s) is one of the Butterworth functions [20]. The first as-
sumption gives
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A (s)A (-s) = D(s)D(-s) - (js)2 n I
D(s)D(-s)

where D(s) is a polynomial; and then the second assumption gives D(s)D(-s) = (const.)
+ (iS)2n. By changing the scale of s, we can arrange to have D(s)D(-s) = 1 + (is)2n and
A(s)A(-s) = [1 + (is) 2n]i1. Since A(O) = -1, we finally have

-1

A(s) = -

The constants a(, a,, . . ., a, are real and positive because A(s) has all its poles in the
left half-plane. With this notation, ao = a, = 1. Since there are 2n terms in (74), we
expect that

F(x, s) = - (77)

in the limit as all K 's vanish. The condition (19) implies that j < 2n - 1 in both of these
sums. The last of the h's gives the function we want:

h2n-I(X) = - &(x, x).

Furthermore, B(x, s) is a rational function times e-sx, and its poles must be the poles of
A (s). Hence

B(x, s) = A(s)b(x, s)e'sx (78)

where b(x, s) is a polynomial in s of degree n-1. We now substitute Eqs. (77) and (78)
into Eq. (21). The terms in esx give

s2n + >3 hj(x)(-sy +

J

1

A(s)
[
> gj(x)si

j

42
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This requires that g,(x) = 1 and that gj(x) = 0 when j > n. Moreover, F(x, s) esx can
have no pole at s = 0; this means that

n 2n-i

I gj(x)sj S e2sx + >3 hj(x)sj

j=O j=O

vanishes at s. = 0, together with its first 2n-1 derivatives. Let us define tk = (2x)k /k!,
and write these two conditions on the g's and h's as

n-l

I an+j-kgk(x) - (-l)n+jhn+j(x) = -aj
k=j

and

n -1

1 Un+jkgk(x) + hn+j(x) = _#

k =O

for j = 0, 1, 2, . . . , n-l. We have eliminated s and obtained 2n linear inhomogeneous equa-
tions. Solution by Cramer's rule gives

1 a.-, ... a, (-1l)n+l ° aO

O 1 ... . a 2 0 (-l)n+2 ... a,

O O . . 1 0 0 ... .

tn tn-i i * I 0 . . . 0

tn+l tn *** t2 0 1 ... t

t2n-1 t2n-2 * 0 0 ... tn-1

a(x, x)=
1 an-1 ... al (-l)n+l 0 0

O 1 ... a2 0 (-l)n+ 2 0

0 0 ... 1 0 0 ... (-1)2n

.n tn-1 i1 1 0 0

tn+i tn * * 2 0 1 . 0

t2n-1 t2n-1 t 0 1
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The 2n X 2n determinants which appear here can easily be reduced to n X n determinants.
Finally, we compute

dx
q(x) = 2 da- &(x, x),

which gives the plasma density.
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